

Scientific Paper:

Biotechnology Letters 25, 377-380, 2003

Characterization and application of an optical sensor for quantification of dissolved O_2 in shake-flasks

Christoph Wittmann^{1,*}, Hyung Min Kim¹, Gernot John² & Elmar Heinzle¹ ¹Biochemical Engineering, Saarland University, Am Stadtwald, 66123 Saarbrücken, Germany ²PreSens GmbH, 93053 Regensburg, Germany *Author for correspondence (Fax: +49-681-302-4572; Email: c.wittmann@mx.uni-saarland.de)

Abstract:

On-line measurement of dissolved O_2 in shake-flasks was realized via immobilized sensor spots containing a fluorophore with an O_2 -dependent luminescent decay time. An unaffected sensor signal during 80 autoclaving cycles suggests multi-usage of sensor equipped shake-flasks. The sensor had a response time of 6 s. Quantification of gas-liquid mass transfer revealed maximum k_La values of 150 h⁻¹, from which maximum O_2 transfer capacity of 33 mM h⁻¹ was calculated. Liquid volume and shaking frequency have a strong influence on k_La . Exemplified by cultivations of *Corynebacterium glutamicum* the importance of shaking rate for O_2 supply of bacterial cultures is shown. Sampling of microbial cultures with intermittent shaking of a few minutes can cause O_2 limitation. Based on the results of this work a simple and straightforward tool is now available for accurate O_2 sensing in shake-flasks, which are widely used in microbial cultivations.

Key-words: Corynebacterium glutamicum, gas-liquid mass transfer, optical sensor, oxygen, shake-flask