Scientific Paper: The Journal of Experimental Biology, 207, 3629-3637, 2004 ## The effects of sustained exercise and hypoxia upon oxygen tensions in the red muscle of rainbow trout D. J. McKenzie^{1,*}, S. Wong², D. J. Randall³, S. Egginton⁴, E. W. Taylor¹ and A. P. Farrell² ## **Abstract:** Teleost fish possess discrete blocks of oxidative red muscle (RM) and glycolytic white muscle, whereas tetrapod skeletal muscles are mixed oxidative/glycolytic. It has been suggested that the anatomy of RM in teleost fish could lead to higher intramuscular O_2 partial pressures (Po_2) than in mammalian skeletal muscles. This study provides the first direct experimental support for this suggestion by using novel optical fibre sensors to discover a mean $(\pm$ S.E.M., N=6) normoxic steady-state red muscle Po_2 $(PRMo_2)$ of 61±10 mmHg (1 mmHg=133.3 Pa) in freeswimming rainbow trout *Oncorhynchus mykiss*. This is significantly higher than literature reports for mammalian muscles, where the Po₂ never exceeds 40 mmHg. Aerobic RM powers sustained swimming in rainbow trout. During graded incremental exercise, PRM_{02} declined from 62±5 mmHg at the lowest swim speed down to 45±3 mmHg at maximum rates of aerobic work, but then rose again to 51±5 mmHg at exhaustion. These measurements of PRMo2 during exercise indicated, therefore, that O₂ supply to the RM was not a major limiting factor at exhaustion in trout. The current study found no evidence that teleost haemoglobins with a Root effect cause extremely elevated O₂ tensions in aerobic tissues. Under normoxic conditions, PRMo₂ was significantly lower than arterial P_{02} (119±5 mmHg), and remained lower when the arterial to tissue Po_2 gradient was reduced by exposure to mild hypoxia. When two sequential levels of mild hypoxia (30 min at a water Po2 of 100 mmHg then 30 min at 75 mmHg) caused Pao_2 to fall to 84±2 mmHg then 61±3 mmHg, respectively, this elicited simultaneous reductions in PRMo2, to 51±6 mmHg then 41±5 mmHg, respectively. Although these hypoxic reductions in PRMo₂ · were significantly smaller than those in $Pa0_2$, the effect could be attributed to the sigmoid shape of the trout haemoglobin -0_2 dissociation curve. Key-words: 0_2 -sensitive optode, Root effect, 0_2 partial pressure, arterial blood 0_2 content, 0_2 consumption, swimming ¹School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK, ²Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada ³Deparment of Biology and Chemistry, City University of Hong Kon, Tat Chee Avenue, Kowloon, Hong Kong, China ⁴Department of Physiology, University of Birmingham, Birmingham B15 2TT, UK ^{*}Author for correspondence at present address: CNRS/IFREMER, CREMA L'Houmeau, BP 5, 17137 L'Houmeau, France (e-mail: David.Mckenzie@ifremer.fr)