Scientific Paper: Am J Physiol Endocrinol Metab 289, E412-E418, 2005 ## Temporal dynamics of inotropic, chronotropic and metabolic responses during β_1 und β_2 .AR stimulation in the isolated, perfused rat heart P. McConville^{1,2}, R. G. Spencer¹ and E. G. Lakatta² ## Abstract: Temporal dynamics of inotropic, chronotropic and metabolic responses during β_1 and β_2 AR stimulation in the isolated, perfused rat heart. During the ß-adrenergic receptor (ß-AR)-mediated stress response in the heart, the relations between functional responses and metabolism are ill defined, with the distinction between β_1 and β_2 . AR subtypes creating further complexity. Specific outstanding questions include the temporal relation between inotropic and chronotropic responses and their metabolic correlates. We sought to elucidate the relative magnitudes and temporal dynamics of the response to β₁. and 82 AR stimulation and the energy expenditure and bioenergetic state related to these responses in the isolated perfused rat heart. Inotropic [left ventricular developed pressure (LVDP) and dP/dt], chronotropic [heart rate (HR)], and metabolic responses were measured during β_1 . (n = 9; agonist: norepinephrine) and Ω_2 . [n = 9; agonist: zinterol) AR stimulation. Myocardial oxygen consumption (MVo₂) was measured using fiberoptic oximetry, and high-energy phosphate levels and intracellular pH were measured using ³¹P NMR spectroscopy. A multiple-dose protocol was used, with near-maximal β-AR stimulation at the highest doses. In both 61 and 62 groups, there were dose-dependent increases in LVDP, dP/dt, HR, and MVo₂. The inotropic response showed more rapid onset, washout, and variation during dose than did the chronotropic response and was closely correlated with MVo2. This suggests that the myocardial bioenergetic state is more closely related to the inotropic response than to the chronotropic response. In addition, β_1 AR stimulation resulted in a greater magnitude and rate of onset of inotropic and MVo₂ responses than did β₂.AR stimulation during maximal stimulation. However, a similar decrease in intracellular energy charge was seen in the two groups, consistent with a greater rate of oxidative phosphorylation during B_1 than during B_2 .AR stimulation. Key-words: Receptors, adrenergic, metabolism, myocardial oxygen consumption, inotropy, chronotropy, phosphorus-31 nuclear magnetic resonance, rat heart, adrenergic receptor ¹Nuclear Magnetic Resonance Unit, Laboratory of Clinical Investigation ²Laboratory for Cardiovascular Science, Gerontology Research Centre, National Institute on Aging, National Institutes of Health, Baltimore, Maryland