Scientific Paper: J Comp Physiol B 177, 579-587, 2007 ## Continuous measurement of oxygen tensions in the airbreathing organ of Pacific tarpon (*Megalops cyprinoides*) in relation to aquatic hypoxia and exercise Roger S. Seymour¹, Anthony P. Farrell², Keith Christian³, Timothy D. Clark¹, Michael B. Bennett⁴, Rufus M. G. Wells⁵, John Baldwin⁶ ## Abstract: The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (AB0) derived from a physostomous gas bladder. Oxygen partial pressure (PO_2) in the AB0 was measured on juveniles (238 g) with fiberoptic sensors during exposure to selected aquatic PO_2 and swimming speeds. At slow speed (0.65 BL s⁻¹), progressive aquatic hypoxia triggered the first breath at a mean PO_2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO_2 of 6.1 kPa and swimming slowly, mean airbreathing frequency was 0.73 min–1, AB0 PO_2 was 10.9 kPa, breath volume was 23.8 ml kg⁻¹, rate of oxygen uptake from the AB0 was 1.19 ml kg⁻¹ min⁻¹, and oxygen uptake per breath was 2.32 ml kg⁻¹. At the fastest experimental speed (2.4 BL s⁻¹) at 6.1 kPa, AB0 oxygen uptake increased to about 1.90 ml kg⁻¹ min⁻¹, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down AB0 perfusion, indicated by a drop in AB0 oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of AB0 PO_2 (1.7–26.4 kPa), suggesting that oxygen level in the AB0 was not regulated by intrinsic receptors. Key-words: Fish; Respiration; Air-breathing; Bimodal gas exchange; Oxygen receptors ¹Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide 5005, Australia; e-mail: roger.seymour@adelaide.edu.au ²Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 ³School of Science, Charles Darwin University, Darwin, NT 0909, Australia ⁴School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia ⁵School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand ⁶School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia