

Scientific Paper:

The Journal of Experimental Biology 210, 2311-2319, 2007

Effect of aerial O₂ partial pressure on bimodal gas exchange and air-breathing behaviour in *Trichogaster leeri*

Lesley A. Alton^{1,*}, Craig R. White^{1,2} and Roger S. Seymour¹

¹Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia and

²School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract:

The effects of experimental alterations of aerial O_2 partial pressure ($P_{02,air}$) on bimodal gas exchange and airbreathing behaviour were investigated in the aquatic airbreathing fish *Trichogaster leeri* in normoxic water. Fish responded to increasing $P_{02,air}$ by decreasing air-breathing frequency, increasing aerial O_2 consumption rate (V_{02}), increasing mean O_2 uptake per breath (V_{02} /breath) and decreasing aquatic V_{02} to maintain a constant total V_{02} . The rate of oxygen uptake from the air-breathing organ (ABO) during apnoea ($V_{02,ap}$) was derived on a breath-bybreath basis from V_{02} /breath and apnoea duration. $V_{02,ap}$ and estimates of ABO volume were used to calculate the P_{02} in the ABO at the end of apnoea. This increased with increasing PO2,air, suggesting that ABO- P_{02} is not regulated at a constant level by internal chemoreceptors. Furthermore, mean V_{02} , ap increased with increasing P_{02} , air, indicating that the observed increase in V_{02} /breath with increasing P_{02} , air was facilitated not only by an increase in apnoea duration but also by an increase in the air-blood P_{02} gradient.

Key-words: Fish, respiration, air-breathing, bimodal gas exchange, aerial O_2 , air-breathing organ, O_2 chemoreceptor