

Scientific Paper:

Hydrobiologica 575, 109-115, 2007

Measurement of temperature and salinity effects on oxygen consumption of *Artemia franciscana* K., measured using fibre-optic oxygen microsensors

Sandra Irwin, Vanessa Wall, John Davenport
Department of Zoology, Ecology & Plant Science and Environmental Research Institute, University College Cork,
Distillery Fields, North Mall, Cork, Ireland e-mail: s.irwin@ucc.ie

Abstract:

Oxygen consumption rates of nauplii of the brine shrimp $Artemia\ franciscana$ Kellogg 1906 were determined over a range of salinities from 10 to 110 ppm, in temperatures from 0 to 30 °C, using a multifactorial design. The oxygen micro-sensors employed have a fast response time and are capable of accurately measuring oxygen concentrations at temperatures well below 0 °C. Oxygen uptake rate ranged from 0.03 to 0.66 μ mol 0 $_2$ mg $^{-1}$ h $^{-1}$ and was sensitive to changes in both salinity and temperature. Temperature was the dominant factor affecting oxygen consumption rates, which showed a significant increase with increasing temperature. A slight decrease was measured in oxygen consumption with increasing salinity related to differential solubility of oxygen in waters of different salinities. Thermal sensitivity of oxygen consumption determined from calculations of \mathbb{Q}_{10} , indicated physiological adaptation of Artemia nauplii to the ranges of temperatures tested.

Key-words: Artemia, brine shrimp, oxygen consumption, salinity, temperature, Q_{10}