

Scientific Paper:

ChemSusChem (2015) 8, 3057 - 3061

A Fluorescence-Based Screening Protocol for the Identification of Water Oxidation Catalysts

R. J. Detz¹, Z. Abiri^{1,2}, A. M. Kluwer², and J. H. N. Reek¹

 $^1\mbox{Van}\,\,{}^\prime\mbox{t}$ Hoff Institute for Molecular Sciences, University of Amsterdam, NL $^2\mbox{InCatT}$ B. V., Amsterdam, NL

Abstract:

Efficient catalysts are crucial for the sustainable generation of fuel by splitting water. A versatile screening protocol would simplify the identification of novel and better catalysts by using high throughput experimentation. Herein, such a screening approach for the identification of molecular catalysts for chemical oxidation of water is reported, which is based on oxygen-sensitive fluorescence quenching using an 0xoDish. More than 200 reactions were performed revealing several catalysts, for example, a dinuclear Fe complex that produced oxygen under the used reaction conditions. Clark electrode measurements confirmed a similar rate in oxygen evolution, making the developed parallel screening approach a robust and versatile tool to screen for molecular water oxidation catalysts using chemical oxidants under acidic and neutral conditions.

Keywords: High-throughput screening, homogeneous catalysis, iron, oxygen evolution, water oxidation