

Scientific Paper:

PNAS (2016) vol. 113, no. 33, 9292-9297

Intratumoral oxygen gradients mediate sarcoma cell invasion

Daniel M. Lewis¹, Kyung Min Park¹, Vitor Tang¹, Yu Xu¹, Koreana Pak^{2,3,4}, T. S. Karin Eisinger-Mathason^{2,3,4}, M. Celeste Simon³, and Sharon Gerecht^{1,5}

¹Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, USA

²Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA

³Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA

Abstract:

Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen $\{0_2\}$ gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of 0_2 depletion. Here, we report the impact of hypoxic 0_2 gradients on sarcoma cell invasion and migration. 0_2 gradient measurements showed that large sarcoma mouse tumors $\{>300\text{ mm}^3\}$ contain a severely hypoxic core $\{\le 0.1\%$ partial pressure of 0_2 $\{p0_2\}$ whereas smaller tumors possessed hypoxic gradients throughout the tumor mass $\{0.1-6\%$ $p0_2\}$. To analyse tumor invasion, we used 0_2 -controllable hydrogels to recreate the physiopathological 0_2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the 0_2 gradient accurately, we examined individual sarcoma cells embedded in the 0_2 -controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodelling through hypoxia-inducible factor- 1α (HIF- α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing 0_2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodelling in the hypoxic gradient. Overall, we show that 0_2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the 0_2 -controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets.

Keywords: hydrogel, sarcoma, hypoxia, gradients, migration

⁴Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA

⁵Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA