

Scientific Paper:

Scientific Reports (2017)

Structural and Functional Analysis of Latex Clearing Protein (Lcp) Provides Insight into Enzymatic Cleavage of Rubber

Lorena Ilcu¹, Wolf Röther², Jakob Birke², Anton Brausemann¹, Oliver Einsle^{1,3}, Dieter Jendrossek² ¹Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Germany ²Institute of Microbiology, University of Stuttgart, Germany ³BIOSS Centre for Biological Signaling Studies, Freiburg Germany

Abstract:

Latex clearing proteins (Lcps) are rubber oxygenases that catalyse the extracellular cleavage of poly(cis-1,4-isoprene) by Gram-positive rubber degrading bacteria. Lcp of *Streptomyces* sp. K30 (Lcp_{K30}) is a b-type cytochrome and acts as an endo-type dioxygenase producing C₂₀ and higher oligo-isoprenoids that differ in the number of isoprene units but have the same terminal functions, CH0-CH₂- and $-CH_2$ -COCH₃. Our analysis of the Lcp_{K30} structure revealed a 3/3 globin fold with additional domains at the N- and C-termini and similarities to globin-coupled sensor proteins. The haem group of Lcp_{K30} is ligated to the polypeptide by a proximal histidine (His198) and by a lysine residue (Lys167) as the distal axial ligand. The comparison of Lcp_{K30} structures in a closed and in an open state as well as spectroscopic and biochemical analysis of wild type and Lcp_{K30} muteins provided insights into the action of the enzyme during catalysis.

Keywords: rubber oxygenase, latex clearing protein, polyisoprene, biodegradation, enzymatic cleavage