

Scientific Paper:

Environmental Science and Pollution Research (2018)

Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species

Tibor Benedek¹, Flóra Szentgyörgyi², István Szabó², Balázs Kriszt², Fruzsina Révész¹, Júlia Radó², Gergely Maróti^{3,4}, András Táncsics¹

¹Regional University Centre of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary

²Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllö, Hungary ³Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary

⁴Faculty of Agricultural and Economics Studies, Tessedik Campus, Szent István University, Szarvas, Hungary

Abstract:

Due to their high resistance against environmental challenges, bacterial biofilms are ubiquitous and are frequently associated with undesired phenomena in environmental industry (e.g. biofouling). However, because of the high phylogenetic and functional diversity, bacterial biofilms are important sources of biotechnologically relevant microorganisms, e. g. those showing bioremediation potential. In our previous work, the high phylogenetic and metabolic diversity of a clogging biofilm, developed in a simple aromatic hydrocarbon (BTEX)-contaminated groundwater well was uncovered. The determination of relationships between different groups of biofilm bacteria and certain metabolic traits has been omitted so far. Therefore, by setting up new biofilm-based enrichment microcosms, the research goal of the present study was to identify the aerobic/hypoxic BTEX-degrading and/or prolific biofilm-forming bacteria. The initial bacterial community composition as well as temporal dynamics due to the selective enrichment has been determined. The obtained results indicated that the concentration of dissolved oxygen may be a strong selective force on the evolution and final structure of microbial communities, developed in hydrocarbon-contaminated environments. Accordingly, members of the genus Malikia proved to be the most dominant community members of the aerobic BTEX-degrading enrichments. Acidovorax spp. dominated the oxygen-limited/hypoxic setup. During the study, a strain collection of 23 different bacterial species was obtained. Non-pathogenic members of this strain collection, with outstanding biodegradation (e.g. Pseudomonas, Variovorax isolates) and biofilm-forming potential (e.g. Rhizobium), may potentially be applied in the development of biofilm-based semipermeable reactive biobarriers.

Keywords: biodegradation, biobarriers, biofilm, BTEX, Catechol 2,3-dioxygenases, oxygen-limited