

## Scientific Paper:

Biocatalysis and Agricultural Biotechnology (2019) 18, 101016

## Phosphate limitation alleviates the inhibitory effect of manganese on itaconic acid production by *Aspergillus terreus*

Badal C. Saha, Gregory J. Kennedy

Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, USA

## Abstract:

Lignocellulosic biomass has the potential to serve as a low-cost source of sugars for production of itaconic acid (IA, a building block platform chemical) by fermentation with *Aspergillus terreus*. However, the IA production from biomass hydrolysate was severely inhibited.  $Mn^{2+}$  was found to inhibit the IA production strongly. The effect of  $Mn^{2+}$  on each medium component ( $KH_2PO_4$ ,  $NH_4NO_3$ ,  $MgSO_4 \cdot 7H_2O$ ,  $CaCI_2 \cdot 2H_2O$ ,  $FeCI_3 \cdot 6H_2O$ ,  $ZnSO_4 \cdot 7H_2O$ , and  $CuSO_4 \cdot 7H_2O$ ) was evaluated for sugar utilization and IA production by *A. terreus* NRRL 1972. Both K<sup>+</sup> and PO<sub>4</sub> <sup>-3</sup> were necessary for IA production. Low  $PO_4^{-3}$  in the medium greatly alleviated the inhibitory effect of  $Mn^{2+}$  on IA production was partly eliminated by increasing the  $CuSO_4 \cdot 7H_2O$  level in the medium. This is the first report on the effect of phosphate limitation to alleviate the inhibition of IA production by  $Mn^{2+}$  and on the relationship of  $Mn^{2+}$  on the medium components for utilization of sugar and production of IA.

Keywords: itaconic acid, *Aspergillus terreus*, Mn<sup>2+</sup>, fermentation, microtiter plate microbioreactor, shake flask with dissolve oxygen sensor spot