

Scientific Paper:

Gastroenterology (2020) 159, 388-390

Development of a Scalable Coculture System for Gut Anaerobes and Human Colon Epithelium

Nobuao Sasaki^{1,2,3}, Kentaro Miyamoto^{1,4}, Kendle M. Maslowski⁵, Hiroshi Ohno⁶, Takanori Kanai^{1,3}, and Toshiro Sato^{1,2}

¹Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Otemachi, Tokyo, Japan

²Department of Organoid Medicine, Keio University School of Medicine, Otemachi, Tokyo, Japan ³AMED-CREST, Otemachi, Tokyo, Japan

⁶Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohame, Kanagawa, Japan

Abstract:

The intestinal epithelium resides at the interface of the gut microbiota and plays a pivotal role in shaping the gut ecosystem. Owing to a lack of tractable coculture systems, the cell biological understanding of host-microbe interactions remains elusive. Organoid technology allows propagation of colonic epithelium under normoxia; however, the conflicting oxygen demands between epithelium and gut anaerobes makes their coculture difficult. We established a simple 2-chamber culture system for human colonic epithelium, termed as Intestinal Hemi-Anaerobic Coculture System (iHACS), consisting of a hypoxic apical chamber and a normoxic basal chamber. The medium in the apical chamber was equilibrated with anaerobic gas and subsequently sealed by inserting a plug made of butyl rubber (AsONE international, Santa Clara, CA). The oxygen concentration of the apical chamber was measured by a fiberoptic oxygen meter (PreSens, Regensburg, Germany). For bacterial coculture, we inoculated anaerobic bacteria (5×10^4 cell/mL in *Bifidobacterium adolescentis*, *Bacteroides fragilis*, *Clostridium butyricum*, and 5.0×10^5 cell/mL in *Akkermansia muciniphila*) in the apical chamber medium.

Keywords: intestinal epithelium, gut microbiota, oxygen demand, coculture, normaxia, host-microbe interactions

⁴Mizarisan Pharmaceutical Co., Ltd, Tokyo, Japan

⁵Instiute of Immunology and Immunotherapy and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK