

Scientific Paper:

Limnology and Oceanography: Methods 4, 7-17, 2006

Evaluation of a lifetime-based optode to measure oxygen in aquatic systems

A. Tengberg^{1,2*}, J. Hovdenes², J. H. Andersson³, O. Brocandel⁴, R. Diaz⁵, D. Hebert⁶, T. Arnerich⁷, C. Huber⁸, A. Körtzinger⁹, A. Khripounoff¹⁰, F. Rey¹¹, C. Rönning¹², J. Schimanski⁹, S. Sommer⁹ and A. Stangelmayer⁸

¹Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden

²Aanderaa Datainstruments, PO Box 160, Nesttunbrekken 97, NO-5852 Bergen, Norway.

³Netherlands Institute of Ecology (NIOO-KNAW), PO Box 140, NL-4400 AC Yerseke, The Netherlands

⁴Nereides, 4 avenue des Indes, FR-91 969 Courtaboeuf, Cedex, France

⁵College of William and Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Pt., VA-23062, USA

⁶Univ. of Rhode Island, Graduate School of Oceanography, Narragansett, RI-02882, USA

⁷In-Situ Inc, 221 East Lincoln Avenue, Fort Collins, Colorado 80524, USA

⁸PreSens GmbH, Josef-Engert Str. 11, D-93053 Regensburg, Germany

⁹Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Düsternbrooker Weg 20, D-24105 Kiel, Germany

¹⁰IFREMER, centre Brest, BP 70, F-29280 Plouzané, France

¹¹Institute of Marine Research, Postboks 1870 Nordnes, N-5817 Bergen, Norway

¹²Department of Ecotechnics, Mid Sweden University, SE-831 45 Östersund, Sweden

*Corresponding author : anderste@chem.gu.se

Abstract:

In this paper we evaluate the performance of a commercially available life-time based optode and compare it with data obtained with other methods. A set of 11 different tests including targeted laboratory evaluations and field studies were performed covering a wide range of situations from shallow coastal waters and waste water treatment plants to abyssal depths. The principal conclusion reached is that this method, due to high accuracy (±2 µM); long-term stability (more than 20 months); lower fouling sensitivity; no pressure hysteresis and limited cross sensitivity, is overall more suitable for oxygen monitoring than other methods.

Key-words: Aquatic systems, oxygen, measure, lifetime-based optode