

Scientific Paper:

Clinical Hemorheology and Microcirculation, 2008, 40, 249 - 258

Transcutaneous pO_2 measurement during tourniquet-induced venous occlusion using dynamic phosphorescence imaging

S. Geis¹, P. Babilas², S. schreml¹, P. Angele¹, M. Nerlich¹, E. M. Jung³, and L. Prantl¹ Department of Trauma and Plastic Surgery, University of Regensburg, Regensburg, Germany

Abstract:

this method.

A sufficient oxygen supply in skin grafts requires a functioning microcirculation. Venous occlusion impairs the microcirculation and is therefore a major threat of healing. Luminescence life time imaging (LLI) enables the non-invasive and two-dimensional assessment of the transcutaneous oxygen partial pressure $\left(p_{tc}O_{2}\right)$. In the current trial this new device was applied for monitoring of venous congestion. A tourniquet on the upper arm was inflated up to 40-50 mmHg and released after 10 min in eight healthy volunteers. The $p_{tc}O_{2}$ was measured at the lower arm every minute prior to, during and up to 10 min after cuff occlusion (40 °C applied skin temperature) using LLI of platinum(II)-octaethyl-porphyrin immobilized in a polystyrene matrix. For validation the polarographic Clark electrode technique was applied in close proximity and measurement was performed simultaneously. $p_{tc}O_{2}$ measurements prior to (Clark: 50.68 ± 5.69 mmHg vs. LLI: 50.89 ± 4.96 mmHg) and at the end of the venous congestion (Clark: 16.41 ± 4.54 mmHg vs. LLI: 23.82 ± 3.23 mmHg) did not differ significantly using the Clark electrode vs. LLI. At the initial congestion respectively reperfusion phase the Clark electrode measured faster decreases respectively increase of $p_{tc}O_{2}$ due to oxygen consumption of

This experimental trial demonstrates the applicability of LLI to quantify the $p_{tc}O_2$ under changing venous blood flow. The use of planar transparent sensors allows the non-invasive generation of two-dimensional maps of surface pO_2 what makes this method particular suitable for monitoring of skin grafts.

 $\label{eq:Key-words} Key-words: Transcutaneous \ p0_2, luminescence \ life \ time \ imaging, Clark \ electrode, planar \ sensor, \\ microcirculation$

²Department of Dermatology, University of Regensburg, Regensburg, Germany

³Department of Radiology, University of Regensburg, Regensburg, Germany