

Scientific Paper:

Cell Proliferation (2019) 00:e12653

Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies

Andreja Vukasovic¹, Maria Adelaide Asnaghi², Petar Kostesic³, Helen Quasnichka⁴, Carmine Cozzolino⁵, Maja Pusic¹, Lauren Hails⁶, Nuala Trainor⁶, Christian Krause⁷, Elisa Figallo⁸, Guiseppe Filardo⁹, Elizaveta Kon⁹, Anke Wixmerten², Drazen Maticic³, Graziella Pellegrini⁵, Wael Kafienah⁴, Damir Hudetz¹⁰, Tim Smith⁶, Ivan Martin^{2,11,12}, Alan Ivkovic¹⁰, David Wendt^{2,11,12,13}

¹Department of Histology and Embryology, School of Medicine, University of Zagreb, Croatia, ²Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland, ³Clinic for Surgery, Ophthalmology & Orthopaedics, Veterinary Faculty, University of Zagreb, Coratia, ⁴School of Cellular and Molecular Medicine, University of Bristol, UK, ⁵Holostem Terapie Avanzante SRL, Modena, Italy, ⁶Octane Biotech, Kingston, Ontario, Canada, ⁷PreSens Precision Sensing GmbH, Regensburg, Germany, ⁸Fin-Ceramica Faenza SPA, Bologna, Italy, ⁹IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy, ¹⁰Department of Orthopaedic Surgery, University Hospital Basel, University of Basel, Switzerland, ¹¹Department or Surgery, University Hospital Basel, University of Basel, Switzerland, ¹²Department of Basel, University Hospital Basel, University of Basel, Switzerland, ¹³Cellec Biotek AG, Basel, Switzerland

Abstract:

Objectives: Bioreactor-based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost-effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor-based manufacturing system for the production of cartilage grafts.

Materials & Methods: All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor-based manufacturing system. All bioreactor technologies and cartilage tissue engineering bioprocesses were transferred to an independent GMP facility, where engineered grafts were manufactured for two large animal studies.

Results: The results of these studies demonstrate the safety and feasibility of the bioreactor-based manufacturing approach. Moreover, grafts produced in the manufacturing system were first shown to accelerate the repair of acute osteochondral defects, compared to cell-free scaffold implants. We then demonstrated that grafts produced in the system also facilitated faster repair in a more clinically relevant chronic defect model. Our data also suggested that bioreactor-manufactured grafts may result in a more robust repair in the longer term.

Conclusion: By demonstrating the safety and efficacy of bioreactor-generated grafts in two large animal models, this work represents a pivotal step towards implementing the bioreactor-based manufacturing system for the production of human cartilage grafts for clinical applications.

Keywords: bioreactor-based manufacturing, cartilage tissue grafts, osteochondral defects, nasal cartilage chondrocytes, regulatory compliance, tissue engineering