Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies

Andreja Vukasovic1, Maria Adelaide Asnaghi2, Petar Kostesic3, Helen Ouasnichka4, Carmine Cozzolino5, Maja Pusic1, Lauren Hails6, Nuala Trainor6, Christian Krause7, Elisa Figallo8, Guiseppe Filardo9, Elizaveta Kon10, Anke Wixmerten2, Drazen Maticic3, Graziella Pellegrini9, Wael Kafienah4, Damir Hudetz10, Tim Smith6, Ivan Martin2,11,12, Alan Ivkovic10, David Wendt9,11,12,13
1Department of Histology and Embryology, School of Medicine, University of Zagreb, Croatia, 2Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland, 3Clinic for Surgery, Ophthalmology & Orthopaedics, Veterinary Faculty, University of Zagreb, Croatia, 4School of Cellular and Molecular Medicine, University of Bristol, UK, 5Holostem Terapie Avanzante SRL, Modena, Italy, 6Octane Biotech, Kingston, Ontario, Canada, 7PreSens Precision Sensing GmbH, Regensburg, Germany, 8Fin-Ceramica Faenza SPA, Bologna, Italy, 9IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy, 10Department of Orthopaedic Surgery, University Hospital Basel, University of Basel, Switzerland, 11Department of Surgery, University Hospital Basel, University of Basel, Switzerland, 12Department of Biomedical Engineering, University Hospital Basel, University of Basel, Switzerland, 13Cellec Biotek AG, Basel, Switzerland

Abstract:
Objectives: Bioreactor-based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost-effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor-based manufacturing system for the production of cartilage grafts.
Materials & Methods: All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor-based manufacturing system. All bioreactor technologies and cartilage tissue engineering bioprocesses were transferred to an independent GMP facility, where engineered grafts were manufactured for two large animal studies.
Results: The results of these studies demonstrate the safety and feasibility of the bioreactor-based manufacturing approach. Moreover, grafts produced in the manufacturing system were first shown to accelerate the repair of acute osteochondral defects, compared to cell-free scaffold implants. We then demonstrated that grafts produced in the system also facilitated faster repair in a more clinically relevant chronic defect model. Our data also suggested that bioreactor-manufactured grafts may result in a more robust repair in the longer term.
Conclusion: By demonstrating the safety and efficacy of bioreactor-generated grafts in two large animal models, this work represents a pivotal step towards implementing the bioreactor-based manufacturing system for the production of human cartilage grafts for clinical applications.

Keywords: bioreactor-based manufacturing, cartilage tissue grafts, osteochondral defects, nasal cartilage chondrocytes, regulatory compliance, tissue engineering