

Scientific Paper:

Sci. Adv. (2019) 5, eaau7518

Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis

Michael R. Blatchley^{1,2}, Franklyn Hall^{1,2}, Songnan Wang², Hawley C. Pruitt², Sharon Gerecht^{1,2,,3,4} ¹Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA ²Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, USA ³Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA ⁴Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA

Abstract:

Vascular morphogenesis is the formation of endothelial lumenized networks. Cluster-based vasculogenesis of endothelial progenitor cells (EPCs) has been observed in animal models, but the underlying mechanism is unknown. Here, using O_2 -controllable hydrogels, we unveil the mechanism by which hypoxia, co-jointly with matrix viscoelasticity, induces EPC vasculogenesis. When EPCs are subjected to a 3D hypoxic gradient ranging from < 2 to 5 %, they rapidly produce reactive oxygen species that up-regulate proteases, most notably MMP-1, which degrade the surrounding extracellular matrix. EPC clusters form and expand as the matrix degrades. Cell-cell interactions, including those mediated by VE-cadherin, integrin- β 2, and ICAM-1, stabilize the clusters. Subsequently, EPC sprouting into the stiffer, intact matrix leads to vascular network formation. In vivo examination further corroborated hypoxia-driven clustering of EPCs. Overall, this is the first description of how hypoxia mediates cluster-based vasculogenesis, advancing our understanding toward regulating vascular development as well as postnatal vasculogenesis in regeneration and tumorigenesis.

Keywords: vasculogenesis, endothelial progenitor cells, hydrogel, hypoxia, MMP-1 protease, cell-cell interaction