Scientific Paper:

Cell Reports (2019) 29, 135 - 150

Restricting Glycolysis Preserves T Cell Effector Functions and Augmented Checkpoint Therapy

Kathrin Renner1,2, Christina Bruss1, Annette Schnell1, Gudrun Koehl3, Holger M. Becker4, Matthias Fante1, Ayse-Nur Menevse2, Nathalie Kauer1, Raquel Blazquez1, Lisa Hacker1, Sonja-Daria Decking1, Toszka Bohn5, Stephanie Faerber1, Katja Evert6, Lisa Aigle1, Sabine Amslinger7, Maria Landa7, Oscar Krijgsman8, Elisa A. Rozeman9, Christina Brummer1, Peter J. Siska1, Katrin Singer1, Stefanie Pektor9, Matthias Miederer9, Katrin Peter1, Eva Gottfired1, Wolfgang Herr1, Ibtisam Marchiq10, Jacques Pouyssegur10,11, William R. Roush12, Sufey Ong13, Sarah Warren13, Tobias Pukrop1, Philipp Beckhove2, Sven A. Lang14, Tobias Bopp5,15,16,17, Christian U. Blank8, John L. Cleveland18, Peter J. Oefner19, Katja Dettmer19, Mark Selby20, and Marina Kreutz1,2

1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany, 2Regensburg Center for Interventional Immunology, Regensburg, Germany, 3Department of Surgery, University Hospital Regensburg, Regensburg, Germany, 4Division of General Zoology, University of Kaiserslautern, Kaiserslautern, Germany, 5Institute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany, 6Institute of Pathology, University of Regensburg, Regensburg, Germany, 7Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany, 8Department Medical Oncology and Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands, 9Department of Nuclear Medicine, University Medical Center, UMC Mainz, Mainz, Germany, 10Institute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France, 11Department of Medical Biology, Scientific Centre of Monaco (CSM), Monaco, 12Department of Chemisty, The Scripps Research Institute, Scripps-Florida, Jupiter, USA, 13NanoString Technologies, Seattle, USA, 14Department of General and Visceral Surgery, Medical Center, Faculty of Medicine University of Freiburg, Freiburg, Germany, 15Research Center for Immunotherapy (FZI), UMC Mainz, Mainz, Germany, 16University Cancer Center Mainz, UMC Mainz, Mainz, Germany, 17German Cancer Consortium (DKTK), Heidelberg, Germany, 18Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, USA, 19Institute of Functional Genomics, University of Regensburg, Regensburg, Germany, 20Bristol-Myers Squibb, Redwood City, USA

Abstract:

Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lower lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.

Keywords: tumor-derived lactic acid, glycolysis, T cell function, genetic blockade, pharmacological inhibition, tumoracidification