

Scientific Paper:

Cell Reports (2019) 29, 135 - 150

Restricting Glycolysis Preserves T Cell Effector Functions and Augmented Checkpoint Therapy

Kathrin Renner^{1,2}, Christina Bruss¹, Annette Schnell¹, Gudrun Koehl³, Holger M. Becker⁴, Matthias Fante¹, Ayse-Nur Menevse², Nathalie Kauer¹, Raquel Blazquez¹, Lisa Hacker¹, Sonja-Maria Decking¹, Toszka Bohn⁵, Stephanie Faerber¹, Katja Evert⁶, Lisa Aigle¹, Sabine Amslinger⁷, Maria Landa⁷, Oscar Krijgsman⁸, Elisa A. Rozeman⁸, Christina Brummer¹, Peter J. Siska¹, Katrin Singer¹, Stefanie Pektor⁹, Matthias Miederer⁹, Katrin Peter¹, Eva Gottfired¹, Wolfgang Herr¹, Ibtisam Marchiq¹⁰, Jaques Pouyssegur ^{10,11}, William R. Roush¹², SuFey Ong¹³, Sarah Warren¹³, Tobias Pukrop¹, Philipp Beckhove², Sven A. Lang¹⁴, Tobias Bopp^{5,15,16,17}, Christian U. Blank⁸, John L. Cleveland¹⁸, Peter J. Oefner¹⁹, Katja Dettmer¹⁹, Mark Selby²⁰, and Marina Kreutz^{1,2}

¹Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany, ²Regensburg Center for Interventional Immunology, Regensburg, Germany, ³Department of Surgery, University Hospital Regensburg, Regensburg, Germany, ⁴Division of General Zoology, University of Kaiserslautern, Kaiserslautern, Germany, ⁵Institute for Immunology, University Medical Center Johannes Gutenberg University (UMC) Mainz, Mainz, Germany, ⁶Institute of Pathology, University of Regensburg, Regensburg, Germany, ²Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany, ⁸Department Medical Oncology and Division of Molecular Oncology and immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands, ⁹Department of Nuclear Medicine, University Medical Center, UMC Mainz, Mainz, Germany, ¹⁰Institute of Research on Cancer and Aging (IRCAN), CNRS-INSERM-UNS UMR 7284, Nice, France, ¹¹Department of Medical Biology, Scientific Centre of Monaco (CSM), Monaco, ¹²Department of Chemistry, The Scripps Research Institute, Scripps-Florida, Jupiter, USA, ¹³NanoString Technologies, Seattle, USA, ¹⁴Department of General and Visceral Surgery, Medical Center, Faculty of Medicine University of Freiburg, Freiburg, Germany, ¹⁵Research Center for Immunotherapy (FZI), UMC Mainz, Mainz, Germany, ¹⁶Diversity Cancer Center Mainz, UMC Mainz, Mainz, Germany, ¹⁷German Cancer Consortium (DKTK), Heidelberg, Germany, ¹⁸Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, USA, ¹⁹Institute of Functional Genomics, University of Regensburg, Regensburg, Germany, ²⁰Bristol-Myers Squibb, Redwood City, USA

Abstract:

Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lower lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.

Keywords: tumor-derived lactic acid, glycolysis, T cell function, genetic blockade, pharmacological inhibition, tumor acidification