Evaluating the effects of ocean warming and freshening on the physiological energetics and transcriptomic response of Antarctic limpet *Nacella concinna*

Jorge M. Navarro1,2, Camille Détrée1,2, Simon A. Morley2, Leyla Cárdenas2,4, Alejandro Ortiz1,2, Luis Vargas-Chacoff1,5, Kurt Paschke2,5, Pablo Gallardo6, Marie-Laure Guillemin2,4,7, Claudio Gonzalez-Wevar1,2

1Instituto de Ciencias Marinas y Limnologicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; 2Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes [IDEAL], Valdivia, Chile; 3British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 4Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; 5Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; 6Centro de Cultivos Marinos Bahia Laredo, Departamento de Ciencias Agropecuarias y Acuícolas, Universidad de Magallanes, Punta Arenas, Chile; 7CNRS, Sorbonne Universite, UMI 3614 Evolutionary Biology and Ecology of Algae, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff cedex, France

Abstract:

In the Southern Ocean, warming and freshening are expected to be prominent signals of climate change and the reduced ability of Antarctic marine organisms to cope with changing environmental conditions could challenge their future survival. The Antarctic limpet *Nacella concinna* is a macroinvertebrate of rocky ecosystems, which occurs in high densities in the shallow subtidal zone. Subtidal individuals were exposed to a combination of temperatures (1, 4, 8, 11, 14 °C) and salinities (20 and 30 psu) for a 60-day period. A drastic increment in mortality was observed with seawater warming, showing that *N. concinna* is highly stenothermal, with limited ability to survive at temperatures warmer than 4 °C, although there was some degree of acclimation at 4 °C and ambient salinity (30 psu). This study confirmed the stenohaline characteristic of this species, with mortality reaching 50% and lower scope for growth at low salinity (20 psu) even at the control temperature (1 °C). At the sub-cellular level, limpets' low tolerance to out-of-range salinity is illustrated by the activation of cell remodelling processes whereas the down-regulation of chaperones proteins and plasma membrane ATPase suggest that under the combination of warming and freshening *N. concinna* experiences a severe level of stress and devote much of its energy to somatic maintenance and survival. The drastic effect observed can be explained by its subtidal origin, an environment with more stable conditions. The surviving individuals at 1 °C and lowered salinity (20 psu) were either more tolerant or showing signs of acclimation after 60 days, but the combination of warming and freshening have a greater combined stress. Projections of climate change for end of the century for this part of the Antarctic can, therefore, result in a significant diminution of the subtidal population of *N. concinna*, affecting ecological interactions and diversity of the food web.

Keywords: warming, freshening, acclimation, physiology, gene expression, *Nacella concinna*