

Scientific Paper:

Journal of Comparative Physiology B

Gills and air-breathing organ in O2 uptake, CO2 excretion, Nwaste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas)

Bernd Pelster^{1,2}, Chris M. Wood^{3,4}, Susana Braz-Mota⁵, Adalberto L. Val⁵ ¹Institute of Zoology, University of Innsbruck, Austria ²Center for Molecular Biosciences, University of Innsbruck, Austria ³Department of Zoology, University of British Columbia, Vancouver, Canada ⁴Department of Biology, McMaster University, Hamilton, Canada ⁵Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil

Abstract:

In the pirarucu (Arapaima gigas), gill surface area and thus gas exchange capacity of the gills are reduced with proceeding development. It, therefore, is expected that A. gigas, starting as a water breather, progressively turns into an obligate air-breathing fish using an air-breathing organ (ABO) for gas exchange. We assessed the air-breathing activity, O₂ and CO₂ exchange into air and water, ammonia-N and urea-N excretion, ion flux rates, and activities of ion transport ATPases in large versus small pirarucu. We found that even very young A. qiqas [4–6 g, 2–3 weeks posthatch) with extensive gills are airbreathers (18.1 breaths $^{+1}$) and cover most (63%) of their O₂ requirements from the air whereas 600-700-g animals (about 3-4 months post-hatch), with reduced gills, obtain 75% of their 0_2 from the air (10.8 breaths $^{+1}$). Accordingly, the reduction in gill surface area hardly affected 0₂ uptake, but development had a significant effect on aerial CO_2 excretion, which was very low (3%) in small fish and increased to 12% in larger fish, yielding a hyper-allometric scaling coefficient (1.12) in contrast to 0.82–0.84 for aquatic and total CO₂ excretion. Mass-specific ammonia excretion decreased in approximate proportion to mass-specific 0₂ consumption as the fish grew, but urea-N excretion dropped from 18% (at 4–6 g) to 8% (at 600–700 g) of total N-excretion; scaling coefficients for all these parameters were 0.70-0.80. Mass-specific sodium influx and efflux rates, as well as potassium net loss rates, departed from this pattern, being greater in larger fish; hyper-allometric scaling coefficients were > 1.0. Gill V-type H⁺ ATPase activities were greater than Na⁺, K⁺-ATPase activities, but levels were generally low and comparable in large and small fish, and similar activities were detected in the ABO. A. gigas is a carnivorous fish throughout its lifecycle, and, despite fasting, protein oxidation accounted for the major portion (61– 82%) of aerobic metabolism in both large and small animals. ABO PO2 and PCO2 (measured in 600–700-g fish) were quite variable, and aerial hypoxia resulted in lower ABO PO₂ values. Under normoxic conditions, a positive correlation between breath volume and ABP PO $_2$ was detected, and on average with a single breath more than 50% of the ABO volume was exchanged. AB0 PCO₂ values were in the range of 1.95–3.89 kPa, close to previously recorded blood PCO₂ levels. Aerial hypoxia (P0₂ down to 12.65 kPa) did not increase either air-breathing frequency or breath volume.

Keywords: air-breathing fish, gas exchange, teleost, ion regulation, nitrogen excretion