

Scientific Paper:

Metabolic Engineering (2020) 61, 181-196

Hydrogen utilization by *Methylocystis* sp. Strain SC2 expands the known metabolic versatility of type IIa methanothrophs

Anna Hakobyan¹, Jing Zhu^{1,2}, Timo Glatter³, Nicole Paczia⁴, Werner Liesach^{1,5}

¹Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

²Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China

³Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

⁴Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

⁵Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany

Abstract:

Methane, a non-expensive natural substrate, is used by Methylocystis sp. As a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. Strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2 % H₂ to the culture headspace had the most significant positive effect on the growth yield under CH_4 (6%) and 0_2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (± 0.52) to 13.82 (± 0.69) mg cell dry weight per mmol CH₄, while CH₄ consumption was significantly reduced. Regardless of H₂ addition, CH₄ utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing 0_2 /CH₄ mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H₂ addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H_2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H₂ may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH₄, such as the production of high-quality feed protein.

Keywords: Knallgas bacteria, hydrogenase, methanotrophs, Methylocystis, proteomics, metabolic model