

Scientific Paper:

Comparative Biochemistry and Physiology (2020) Part A 247, 110743

The gaseous gastrointestinal tract of a seawater teleost, the English sole (*Parophrys vetulus*)

Ellen H. Jung^{1,2}, Junho Eom^{1,2}, Colin J. Brauner¹, Fernando Martinez-Ferreras³, Chris M. Wood^{1,2} ¹Department of Zoology, University of British Columbia, Vancouver, Canada ²Bamfield Marine Sciences Centre, Bamfield, Canada ³PreSens Precision Sensing GmbH, Regensburg, Germany

Abstract:

There has been considerable recent progress in understanding the respiratory physiology of the gastrointestinal tract (GIT) in teleosts, but the respiratory conditions inside the GIT remain largely unknown, particularly the luminal PCO₂ and PO₂ levels. The GIT of seawater teleosts is of special interest due to its additional function of water absorption linked to HCO_3^- secretion, a process that may raise luminal PCO₂ levels. Direct measurements of GIT PCO₂ and PO₂ using micro-optodes in the English sole (*Parophrys vetulus*; anaesthetized, artificially ventilated, 10-12 °C) revealed extreme luminal gas levels. Luminal PCO₂ was 14-17 mmHg in the stomach and intestinal segments of fasted sole, considerably higher than arterial blood levels of 5 mmHg. Moreover, feeding, which raised intestinal HCO₃⁻ concentration, also raised luminal PCO₂ to 34-50 mmHg. All these values were higher than comparable measurements in freshwater teleosts, and also greater than environmental CO₂ levels of concern in aquaculture or global change scenarios. The PCO₂ values in subintestinal vein blood draining the GIT of fed fish (28 mmHg) suggested some degree of equilibration with high luminal PCO₂, whereas subintestinal vein PO₂ levels were relatively low (9 mmHg). All luminal sections of the GIT were virtually anoxic (PO₂ ≤ 0.3 mmHg), in both fasted and fed animals, a novel finding in teleosts.

Keywords: lemon sole, feeding, CO₂, O₂, pH, HCO₃, stomach, intestine