

Scientific Paper:

Sensors and Materials (2021) Vol. 33, No. 3, 1037-1050

Microfluidic Approach for Measurements of pH, O₂, and CO₂ in Saliva

Ivana Podunavac¹, Stevan Hinic², Sanja Kojic³, Nina Jelenciakova², Vasa Radonic¹, Bojan Petrovic², and Goran Stojanovic³

¹BioSense Institute, University of Novi Sad, Novi Sad, Serbia

²Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

³Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

Abstract:

In this paper, we propose a microfluidic approach for measuring pH, dissolved oxygen (O_2) , and carbon dioxide (CO_2) in human saliva. The proposed innovative method combines the advantages of a microfluidic approach, i.e., small amounts of samples and reagents and precise control of the experimental conditions, with rapid measurements of significant parameters of saliva. The novel design of a microfluidic chip with integrated commercially available PreSens sensors was used for examining the effect of Chlorhexidine on artificial saliva (AS), stimulated saliva (SS), and non-stimulated saliva (NSS). The measurement results showed that for persons with an initially low saliva pH, the use of Chlorhexidine increased the pH, and afterward, the pH value returned to the initial value or higher. However, measurements of volunteers with initial pH close to neutral showed that Chlorhexidine reduced the pH value, increasing the risk of erosion and demineralization. In conclusion, the proposed methodology showed potential for precise measurements of pH in saliva samples; however, further research is required to examine the influence of the sample collection method on the amounts of O_2 and CO_2 in saliva.

Keywords: saliva, microfluidics, sensors, pH, oxygen, carbon dioxide