

Scientific Paper:

Nature Communications (2023) 14:7019

Electrocatalytic on-site oxygenation for transplanted cellbased-therapies

Inkyu Lee¹, Abhijith Surendran², Samantha Fleury³, Ian Gimino⁴, Alexander Curtiss⁵, Cody Fell³, Daniel J. Shiwarski⁶, Omar Refy⁷, Blaine Rothrock⁸, Seonghan Jo¹, Tim Schwartzkopff⁴, Abijeet Singh Mehta², Yingqiao Wang¹, Adam Sipe⁹, Sharon John¹⁰, Xudong Ji^{2,11}, Georgios Nikiforidis², Adam W. Feinberg^{1,6}, Josiah Hester¹², Douglas J. Weber^{6,10,13}, Omid Veiseh³, Jonathan Rivnay^{2,11,14}, Tzahi Cohen-Karni^{1,6} ¹Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ²Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. ³Department of Bioengineering, Rice University, Houston, TX, USA. ⁴Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ⁵Department of Electrical andComputer Engineering, Northwestern University, Evanston, IL, USA. ⁶Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ⁸Department of Computer Science, Northwestern University, Evanston, IL, USA. ⁹Department of Material Science and Engineering, The Pennsylvania State University, State College, PA, USA. ¹⁰Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. ¹¹Simpson Querrey Institute, Northwestern University, Chicago, IL, USA. ¹²Interactive Computing and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA. ¹³Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ¹⁴Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

Abstract:

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.

Keywords: implantable cell therapies, oxygen production, bioelectronic platform, hypoxic stress, iridium oxide, electrocatalytic on site oxygenation