

Scientific Paper:

Fermentation (2024) 10, 135

Microbial Factories and Exploiting Synergies of Bioreactor Technologies to Produce Bioproducts

Tim Granata^{1,2}, Bernd Rattenbacher^{1,2,3}, Florian Kehl^{1,2,4} and Marcel Egli^{1,2}

¹Center for Bio- and Medical Engineering, Hochschule Luzern, Hergiswil, Switzerland

²Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland

³Biotesc and Hochschule Luzern, Lucerne School of Engineering and Architecture, Horw, Switzerland ⁴Space Instruments Group, Department of Astrophysics, University of Zurich, Zurich, Switzerland

Abstract:

Microbial factories, including microalgae biofactories, have the enormous potential to produce biochemicals for manufacturing diverse bioproducts. A strategic approach to biofactories is maintaining cultures in bioreactors with sufficient resource inputs to optimize biochemical precursors for manufacturing bioproducts. Exploiting synergies that use the waste output from a bioreactor containing one microbial culture as a resource input to another bioreactor with a different microbe can lead to overall efficiencies in biofactories. In this paper, two synergies are evaluated. The first is between yeast and algae bioreactors, where data are presented on oxygen (0_2) uptake by aerobic yeast cultures and their production of carbon dioxide $(C0_2)$ and the uptake of $C0_2$ by algae and their production of 0_2 . The second focuses on a carbon capture reactor, which is utilized to increase $C0_2$ levels to promote higher algal production. This approach of waste as a resource for bioreactor cultures is a novel synergy that can be important to bioreactor designs and, ultimately, to the production of bioproducts.

Keywords: bioreactors, synergies, carbon capture, bioproducts